Supported Models
Supported LLMs
The following models are currently supported for fine-tuning:
meta-llama/Meta-Llama-3.1-8B
8.03B
16.07 GB
LlamaForCausalLM
32,768 tokens
meta-llama/Meta-Llama-3.1-8B-Instruct
8.03B
16.07 GB
LlamaForCausalLM
32,768 tokens
meta-llama/Meta-Llama-3.1-70B
70.6B
141.1 GB
LlamaForCausalLM
32,768 tokens
meta-llama/Meta-Llama-3.1-70B-Instruct
70.6B
141.1 GB
LlamaForCausalLM
32,768 tokens
meta-llama/Llama-2-7b-hf
6.74B
13.49 GB
LlamaForCausalLM
4,096 tokens
meta-llama/Llama-2-7b-chat-hf
6.74B
13.49 GB
LlamaForCausalLM
4,096 tokens
meta-llama/Llama-2-13b-hf
13B
26.03 GB
LlamaForCausalLM
4,096 tokens
meta-llama/Llama-2-13b-chat-hf
13B
26.03 GB
LlamaForCausalLM
4,096 tokens
meta-llama/Llama-2-70b-hf
69B
137.96 GB
LlamaForCausalLM
4,096 tokens
meta-llama/Llama-2-70b-chat-hf
69B
137.96 GB
LlamaForCausalLM
4,096 tokens
mistralai/Mistral-7B-v0.1
7.24B
14.48 GB
MistralForCausalLM
32,768 tokens
mistralai/Mistral-7B-v0.3
7.25B
14.5 GB
MistralForCausalLM
32,768 tokens
mistralai/Mistral-7B-Instruct-v0.1
7.24B
14.48 GB
MistralForCausalLM
32,768 tokens
mistralai/Mistral-7B-Instruct-v0.2
7.24B
14.48 GB
MistralForCausalLM
32,768 tokens
mistralai/Mistral-7B-Instruct-v0.3
7.25B
14.5 GB
MistralForCausalLM
32,768 tokens
phi-3-mini-4k-instruct
3.82B
7.64GB
Phi3ForCausalLM
4,096 tokens
google/gemma-2b
2.51B
5.01 GB
GemmaForCausalLM
8,192 tokens
google/gemma-1.1-2b-it
2.51B
5.01 GB
GemmaForCausalLM
8,192 tokens
google/gemma-7b
8.54B
17.08 GB
GemmaForCausalLM
8,192 tokens
google/gemma-1.1-7b-it
8.54B
17.08 GB
GemmaForCausalLM
8,192 tokens
google/gemma-2-9b
9.24B
18.48 GB
Gemma2ForCausalLM
8,192 tokens
google/gemma-2-9b-it
9.24B
18.48 GB
Gemma2ForCausalLM
8,192 tokens
google/gemma-2-27b
27.2B
54.45 GB
Gemma2ForCausalLM
8,192 tokens
google/gemma-2-27b-it
27.2B
54.45 GB
Gemma2ForCausalLM
8,192 tokens
Qwen/Qwen2-7B
7.62B
15.23 GB
Qwen2ForCausalLM
32,768 tokens
Qwen/Qwen2-7B-Instruct
7.62B
15.23 GB
Qwen2ForCausalLM
32,768 tokens
Qwen/Qwen2-72B
72.7B
145.41 GB
Qwen2ForCausalLM
8,192 tokens
Qwen/Qwen2-72B-Instruct
72.7B
145.41 GB
Qwen2ForCausalLM
8,192 tokens
LLM Types
As you can see from the table above, there are two types of LLMs available:
Base Models: These are foundational models trained on large, diverse datasets without specific task instructions. The main objective of such models is text completion.
Instruct Models (usually with
base
,instruct
,chat
orit
present in their name): These models are fine-tuned from base models to excel in interactive or instruction-based tasks. They are often trained on structured dialogues, enabling them to adopt specific roles or tones (e.g., "helpful assistant") and they are specialized for interpreting and responding to prompts in a conversational, helpful manner.
Currently, only fine-tuning for instruct models is supported. Base model fine-tuning for text completion will be supported in the future.
Last updated