Supported Models

Supported LLMs

The following models are currently supported for fine-tuning:

ModelParametersSizeArchitectureContext Window

meta-llama/Meta-Llama-3.1-8B

8.03B

16.07 GB

LlamaForCausalLM

32,768 tokens

meta-llama/Meta-Llama-3.1-8B-Instruct

8.03B

16.07 GB

LlamaForCausalLM

32,768 tokens

meta-llama/Meta-Llama-3.1-70B

70.6B

141.1 GB

LlamaForCausalLM

32,768 tokens

meta-llama/Meta-Llama-3.1-70B-Instruct

70.6B

141.1 GB

LlamaForCausalLM

32,768 tokens

meta-llama/Llama-2-7b-hf

6.74B

13.49 GB

LlamaForCausalLM

4,096 tokens

meta-llama/Llama-2-7b-chat-hf

6.74B

13.49 GB

LlamaForCausalLM

4,096 tokens

meta-llama/Llama-2-13b-hf

13B

26.03 GB

LlamaForCausalLM

4,096 tokens

meta-llama/Llama-2-13b-chat-hf

13B

26.03 GB

LlamaForCausalLM

4,096 tokens

meta-llama/Llama-2-70b-hf

69B

137.96 GB

LlamaForCausalLM

4,096 tokens

meta-llama/Llama-2-70b-chat-hf

69B

137.96 GB

LlamaForCausalLM

4,096 tokens

mistralai/Mistral-7B-v0.1

7.24B

14.48 GB

MistralForCausalLM

32,768 tokens

mistralai/Mistral-7B-v0.3

7.25B

14.5 GB

MistralForCausalLM

32,768 tokens

mistralai/Mistral-7B-Instruct-v0.1

7.24B

14.48 GB

MistralForCausalLM

32,768 tokens

mistralai/Mistral-7B-Instruct-v0.2

7.24B

14.48 GB

MistralForCausalLM

32,768 tokens

mistralai/Mistral-7B-Instruct-v0.3

7.25B

14.5 GB

MistralForCausalLM

32,768 tokens

phi-3-mini-4k-instruct

3.82B

7.64GB

Phi3ForCausalLM

4,096 tokens

google/gemma-2b

2.51B

5.01 GB

GemmaForCausalLM

8,192 tokens

google/gemma-1.1-2b-it

2.51B

5.01 GB

GemmaForCausalLM

8,192 tokens

google/gemma-7b

8.54B

17.08 GB

GemmaForCausalLM

8,192 tokens

google/gemma-1.1-7b-it

8.54B

17.08 GB

GemmaForCausalLM

8,192 tokens

google/gemma-2-9b

9.24B

18.48 GB

Gemma2ForCausalLM

8,192 tokens

google/gemma-2-9b-it

9.24B

18.48 GB

Gemma2ForCausalLM

8,192 tokens

google/gemma-2-27b

27.2B

54.45 GB

Gemma2ForCausalLM

8,192 tokens

google/gemma-2-27b-it

27.2B

54.45 GB

Gemma2ForCausalLM

8,192 tokens

Qwen/Qwen2-7B

7.62B

15.23 GB

Qwen2ForCausalLM

32,768 tokens

Qwen/Qwen2-7B-Instruct

7.62B

15.23 GB

Qwen2ForCausalLM

32,768 tokens

Qwen/Qwen2-72B

72.7B

145.41 GB

Qwen2ForCausalLM

8,192 tokens

Qwen/Qwen2-72B-Instruct

72.7B

145.41 GB

Qwen2ForCausalLM

8,192 tokens

LLM Types

As you can see from the table above, there are two types of LLMs available:

  1. Base Models: These are foundational models trained on large, diverse datasets without specific task instructions. The main objective of such models is text completion.

  2. Instruct Models (usually with base, instruct, chat or it present in their name): These models are fine-tuned from base models to excel in interactive or instruction-based tasks. They are often trained on structured dialogues, enabling them to adopt specific roles or tones (e.g., "helpful assistant") and they are specialized for interpreting and responding to prompts in a conversational, helpful manner.

Currently, only fine-tuning for instruct models is supported. Base model fine-tuning for text completion will be supported in the future.

Last updated