Dynamiq Docs
  • Welcome to Dynamiq
  • Low-Code Builder
    • Chat
    • Basics
    • Connecting Nodes
    • Conditional Nodes and Multiple Outputs
    • Input and Output Transformers
    • Error Handling and Retries
    • LLM Nodes
    • Validator Nodes
    • RAG Nodes
      • Indexing Workflow
        • Pre-processing Nodes
        • Document Splitting
        • Document Embedders
        • Document Writers
      • Inference RAG workflow
        • Text embedders
        • Document retrievers
          • Complex retrievers
        • LLM Answer Generators
    • LLM Agents
      • Basics
      • Guide to Implementing LLM Agents: ReAct and Simple Agents
      • Guide to Agent Orchestration: Linear and Adaptive Orchestrators
      • Guide to Advanced Agent Orchestration: Graph Orchestrator
    • Audio and voice
    • Tools and External Integrations
    • Python Code in Workflows
    • Memory
    • Guardrails
  • Deployments
    • Workflows
      • Tracing Workflow Execution
    • LLMs
      • Fine-tuned Adapters
      • Supported Models
    • Vector Databases
  • Prompts
    • Prompt Playground
  • Connections
  • LLM Fine-tuning
    • Basics
    • Using Adapters
    • Preparing Data
    • Supported Models
    • Parameters Guide
  • Knowledge Bases
  • Evaluations
    • Metrics
      • LLM-as-a-Judge
      • Predefined metrics
        • Faithfulness
        • Context Precision
        • Context Recall
        • Factual Correctness
        • Answer Correctness
      • Python Code Metrics
    • Datasets
    • Evaluation Runs
    • Examples
      • Build Accurate vs. Inaccurate Workflows
  • Examples
    • Building a Search Assistant
      • Approach 1: Single Agent with a Defined Role
      • Approach 2: Adaptive Orchestrator with Multiple Agents
      • Approach 3: Custom Logic Pipeline with a Straightforward Workflow
    • Building a Code Assistant
  • Platform Settings
    • Access Keys
    • Organizations
    • Settings
    • Billing
  • On-premise Deployment
    • AWS
    • IBM
  • Support Center
Powered by GitBook
On this page
  • Supported LLMs
  • LLM Types
  1. LLM Fine-tuning

Supported Models

Supported LLMs

The following models are currently supported for fine-tuning:

Model
Parameters
Size
Architecture
Context Window

meta-llama/Meta-Llama-3.1-8B

8.03B

16.07 GB

LlamaForCausalLM

32,768 tokens

meta-llama/Meta-Llama-3.1-8B-Instruct

8.03B

16.07 GB

LlamaForCausalLM

32,768 tokens

meta-llama/Meta-Llama-3.1-70B

70.6B

141.1 GB

LlamaForCausalLM

32,768 tokens

meta-llama/Meta-Llama-3.1-70B-Instruct

70.6B

141.1 GB

LlamaForCausalLM

32,768 tokens

meta-llama/Llama-2-7b-hf

6.74B

13.49 GB

LlamaForCausalLM

4,096 tokens

meta-llama/Llama-2-7b-chat-hf

6.74B

13.49 GB

LlamaForCausalLM

4,096 tokens

meta-llama/Llama-2-13b-hf

13B

26.03 GB

LlamaForCausalLM

4,096 tokens

meta-llama/Llama-2-13b-chat-hf

13B

26.03 GB

LlamaForCausalLM

4,096 tokens

meta-llama/Llama-2-70b-hf

69B

137.96 GB

LlamaForCausalLM

4,096 tokens

meta-llama/Llama-2-70b-chat-hf

69B

137.96 GB

LlamaForCausalLM

4,096 tokens

mistralai/Mistral-7B-v0.1

7.24B

14.48 GB

MistralForCausalLM

32,768 tokens

mistralai/Mistral-7B-v0.3

7.25B

14.5 GB

MistralForCausalLM

32,768 tokens

mistralai/Mistral-7B-Instruct-v0.1

7.24B

14.48 GB

MistralForCausalLM

32,768 tokens

mistralai/Mistral-7B-Instruct-v0.2

7.24B

14.48 GB

MistralForCausalLM

32,768 tokens

mistralai/Mistral-7B-Instruct-v0.3

7.25B

14.5 GB

MistralForCausalLM

32,768 tokens

phi-3-mini-4k-instruct

3.82B

7.64GB

Phi3ForCausalLM

4,096 tokens

google/gemma-2b

2.51B

5.01 GB

GemmaForCausalLM

8,192 tokens

google/gemma-1.1-2b-it

2.51B

5.01 GB

GemmaForCausalLM

8,192 tokens

google/gemma-7b

8.54B

17.08 GB

GemmaForCausalLM

8,192 tokens

google/gemma-1.1-7b-it

8.54B

17.08 GB

GemmaForCausalLM

8,192 tokens

google/gemma-2-9b

9.24B

18.48 GB

Gemma2ForCausalLM

8,192 tokens

google/gemma-2-9b-it

9.24B

18.48 GB

Gemma2ForCausalLM

8,192 tokens

google/gemma-2-27b

27.2B

54.45 GB

Gemma2ForCausalLM

8,192 tokens

google/gemma-2-27b-it

27.2B

54.45 GB

Gemma2ForCausalLM

8,192 tokens

Qwen/Qwen2-7B

7.62B

15.23 GB

Qwen2ForCausalLM

32,768 tokens

Qwen/Qwen2-7B-Instruct

7.62B

15.23 GB

Qwen2ForCausalLM

32,768 tokens

Qwen/Qwen2-72B

72.7B

145.41 GB

Qwen2ForCausalLM

8,192 tokens

Qwen/Qwen2-72B-Instruct

72.7B

145.41 GB

Qwen2ForCausalLM

8,192 tokens

LLM Types

As you can see from the table above, there are two types of LLMs available:

  1. Base Models: These are foundational models trained on large, diverse datasets without specific task instructions. The main objective of such models is text completion.

  2. Instruct Models (usually with base, instruct, chat or it present in their name): These models are fine-tuned from base models to excel in interactive or instruction-based tasks. They are often trained on structured dialogues, enabling them to adopt specific roles or tones (e.g., "helpful assistant") and they are specialized for interpreting and responding to prompts in a conversational, helpful manner.

Currently, only fine-tuning for instruct models is supported. Base model fine-tuning for text completion will be supported in the future.

PreviousPreparing DataNextParameters Guide

Last updated 6 months ago